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Using Babinet's theorem and certain results of the theory of short-range order originally developed for 
Cu3Au alloys it is shown that the diffuse scattering intensity in the electron diffraction patterns of the 
substoichiometric transition metal carbides is related to a short-range order of carbon vacancies. 
Numerical values for the short-range order parameters can be obtained by integrating over the total 
diffuse intensity within one repetitive unit in reciprocal space. To perform such calculations on VC0.7s 
an analytical function was identified which describes the shape of the diffuse intensity curves in recip- 
rocal space. Making the simplifying assumption that the value of the diffuse intensity is 1 on the diffuse 
intensity curve and 0 everywhere else numerical values for the vacancy short-range order in VC0.75 
were obtained. The results, represented as average numbers of vacancies in different coordination shells 
around a vacancy, agree with the general principles of vacancy arrangement found in ordered transition 
metal carbides and nitrides. 

Introduction 

As has been shown in detail in Part I of the present 
paper, (Billingham, Bell & Lewis, 1972), transition 
metals of groups IV and V with carbon and nitrogen 
form substoichiometric compounds with the NaC1 
structure type exhibiting vacancy short-range order 
within certain domains of composition and temper- 
ature. It is commonly assumed that the f.c.c, partial 
structure of the metal atoms is perfect while vacancies 
occur in the carbon or nitrogen f.c.c, partial structure: 
one is then dealing with a short-range order problem 
in a 'binary compound' AxABxB where A denotes here 
a vacancy and B a carbon or nitrogen atom. Such 
problems have already been treated in the case of me- 
tallic phases: Au-Cu alloys (Cowley, 1950; Moss, 1964) 
or Au-Pd alloys (Lin, Spruiell & Williams, 1970). 

As is well known, short-range order in direct space 
will result in non-zero diffuse scattering between the 
nodes of the mean reciprocal lattice. According to 
Cowley's theory (Warren, 1969), the analysis of this 
diffuse intensity, measured by X-ray or electron dif- 
fraction techniques, enables one to derive the most 
probable local arrangement for A and B atoms in the 
compound. 

The purpose of the present work is to apply Cow- 
ley's theory, which we will treat in the first section, to 
carbides and nitrides of transition metals with the 
NaCI structure type. The experimental material for the 
diffuse intensity measurements are the electron diffrac- 
tion patterns presented in Fig. 2 of Part I. The calcu- 
lations are made for the particular compound VC0.7s, 
but our results can be easily extended to other com- 
pounds and compositions. 

* On leave from the Laboratoire de Min6ralogie-Cristal- 
lographie associ6 au C.N.R.S., Universit6 de Paris VI, France. 

Information on the local vacancy arrangement in 
these compounds is of particular interest since the 
latter is directly related to the nature of bonding be- 
tween the metal and the non-metal atoms (Lye, 1971; 
Nowotny & Neckel, 1969). 

Correlation between diffuse intensity and short-range 
order parameters 

The most general expression for the amplitude scat- 
tered by a vanadium carbide single crystal grain is: 

a l l  V atoms in 
s ing le  crystal 

R(H') = ~ fv exp (2rci H ' .  rvj) 
J 

a l l  C atoms in 
s ing le  crystal 

+ ~ fc exp (2zciH'. rc,) (1) 
i 

where H'  denotes a vector in reciprocal space with 
continuously varying coordinates. 

One gets a more useful expression for the amplitude 
of a scattered beam, in a vacancy type carbide, by ad- 
ding and subtracting the contribution of carbon atoms 
which are actually missing in the real object. 

a l l  V atoms in 
s ing le  crystal  

R(H') = ~ [fv exp (2~iH' .  rvj) 
J 

+fc  exp {2zriH'. (rvj+a/2)}] 
vacancy s i tes  In  

s ing le  crystal 

-- ~ fc  exp (2~iH' .  rt~o) (2) 
g 

where a is one translation vector of the direct cubic 
lattice. 

The first summation gives the amplitude scattered 
by a perfectly stoichiometric VC single crystal grain 
with NaC1 structure. As is well known, this summation 

A C 2 8 A  - 9* 
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equals zero for any H'  vector different from H = ha*+ 
kb*+ lc* where h, k, I are integers all odd or all even. 
Introducing the number N of cubic unit cells in the 
object one obtains: 

R ( H ' )  = 

vacancy sites in  
s ingle  c r y s t a l  

+ N. 4(fv + f c ) -  ~ fc exp (2rdH'.  rc3o) 
9 

when H'  = H (3a) 

vacancy sites In 
s ingle  crystal 

- ~ fc exp (2rciH'. rtzo) (3b) 
g 

when H'  # H . 

From now on, only the intensities or amplitudes scat- 
tered in directions H '  different from H, i.e. in between 
the mean reciprocal lattice points corresponding to a 
real f.c.c, lattice, will be considered. The expression 
(3b) for the amplitude R(H') appears as a summation 
over the vacant carbon sites in the single crystal grain. 
If we now imagine an 'atom', denoted by the symbol 
Vq, having a scattering factor f[] equal to zero, located 
on every site actually occupied by a carbon atom in 
the single crystal, we are able to write the amplitude 
R(H') as a summation over all possible carbon sites 
in the single crystal grain: 

R ( H ' )  = - 

vacancy sites tu 
s ingle  crystal i ' 

~ fc exp (2re H . rrno) 

actua l ly  occupied 
carbon atom sites 
in  s l n g ~ c r y s t a l  

+ frn exp (2~ilt '  . rci) 
i 

a l l  possible carbon 
s i t e s  in  s ingle  c r y s t a l  

= - -  ~_,  fMj exp (2~iH'. FMj  ) 
J 

where fM.i=fc or ft3- (4) 

Considering the NaCI structure, one can see that 
R(H') describes the amplitude scattered by a distri- 
bution of carbon atoms and vacancies on all the sites 
of a single crystal with an A 1 (Cu) structure type. How- 
ever, this distribution is complementary to the actual 
distribution and corresponds to the average composi- 
tion [:]0.7sCo.zs, the actual composition being VCo.7s 
[::]o.zs. This result is a direct consequence of Babinet's 
theorem on complementary screens in diffraction 
theory. 

Our problem, concerning short-range order in the 
,binary compound', [S]0.7sCo.2s, is then closely related 
to the similar problem of the binary alloy Cu3Au, al- 
ready studied by Cowley (1950) and which is thorough- 
ly treated in Warren's (1969) book. 

In what follows, we will make extensive use of 
Warren's notation, as far as it is suitable for our pro- 
blem. 

The diffuse intensity due to short-range order, in 
directions H',  different from H, is given by: 

I sgo (H' )  = R ( H ' ) .  R ( H ' ) *  
A1 A/  

= ~ ~fMj-fMj '  exp {(2zciH'. (rMj--rMj,)} (5) 
j j '  

where A1 is used here as a simplified notation for the 
sentence 'all possible sites in a single crystal with A1 
structure type'. 

The mean value for the product fMj. fMj' is: 

(fMfM,>=(O'V5fD + 0"25fc)2 = 0"0625/~. (6) 

Adding and subtracting this mean value, one obtains 
for Isgo(H')" 

AI A1 

IsRo(H') = ~ ~ (fMj. fMJ' -- 0"0625 f~) 
j J '  

exp {2niH'.  (rMj--rMj,)} 
AI A1 

+0.0625f~ ~ ~ exp {2~ziH'. (rM:--rMj,)) • 
j j '  

(7) 

The second summation has values different from zero 
only if H ' = H .  However since we are interested only 
in vectors H':I: H this summation can be omitted from 
the further development of the theory. 

The first summation is made of pairs such as" 

( f M J "  f M j '  - -  0"0625f 2) exp {2niH'.  ( r M j  - -  r M j , ) )  

+(fM;  .fMj--0"0625f 2) exp {2niH'.  (rM~,--rM:)} 

it can then be written as a cosine sum: 

A1 A1 

Isgo(H') = ~ ~ (fMj-fMj'--0"0625 f2c) 
J 3" 

x cos 2 n i l ' .  (rMj--rMj,) • (8) 

As there is only one atom per Bravais lattice point in 
the A 1 structure, any vector rn = (rMj--rM:,) must be a 
lattice translation as well. Let us consider all pairs of 
atoms in the object which are separated by such a 
vector r,, and we will denote by (fMfM'>,, the mean 
value offMfM', for all those pairs and by Zn their num- 
ber. Using these new quantities the expression for 
Isao(H') can be written as a simple summation: 

al l  vectors connect ing  a g i v e n  
c a r b o n  s i t e  to o t h e r  p o s s i b l e  
carbon sites in a s ingle  crystal 
with  A1 s t r u c t u r e  

IsRo(H') ~ ~.. Z,,((fMfM,>. 
n = 0  

-0.0625f~) cos 2~H' .  r . .  (9) 

To simplify the notation, we will use from now on the 
symbol VEC(A1) to represent the set of vectors over 
which the summation is to be performed. 

In short-range ordered structures the mean value 
<fMfM'>,, is different from the general mean value 
(fMfM,>=O'O625fg only for short vectors r,.. In this 
case the number Zn can be approximated by the num- 
ber of carbon sites in the single crystal which is 4N, N 
being the number of cubic unit cells, and then: 
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VEC(A1) 

IsRo(H') " ~ 4N((fMfM,}n--O'O625f~) 
n = 0  

x cos 2 n i l ' .  r , .  (10) 

Following Warren's treatment, we will introduce two 
probabilities, valid for the complementary structure 
[~]0.75C0.25 : 

pn(n): ,  probability of finding a vacancy [] as a r, 
neighbour of a carbon atom, 

pc(n): probability of finding a carbon atom as a r, 
neigbour of a vacancy. 

Let xD and Xc be the concentrations of vacancies and 
carbon atoms respectively in the complementary struc- 
ture. The number of pairs [ ]C separated by a parti- 
cular vector r, is then given by pc(n), x n .  4N. Obvious- 
ly this is equal to the number of pairs C[-] separated 
by the opposite vector - r ,  which is pt~(-n)  • Xc. 4N. 
Assuming that the distribution of vacancies is statisti- 
cally centrosymmetrical that means pn(n)=pD(-n) ,  
one obtains the following general equation 

xtn pc(n) = Xcpn(n). (11) 

When carbon atoms and vacancies are randomly di- 
stributed one gets, in addition, the relations 

pc(n)=xc and pt~(n)=xrl. (12a) 

In the case of a preference for unlike r, neighbours, 
one finds: 

pc(n) > Xc and pn(n) > x n .  (12b) 

The contrary holds in the case of a preference for r, 
neighbours of the same kind: 

pc(n) < Xc and pn(n) < x n .  (12c) 

Using p[](n) and pc(n) the expression for (fMfM'), is: 

( f M f M" ),, = Xc f  c[ pD(n) f r7 + (1 --PD(n) ) f c] 
+ Xrn fn  (pc(n)fc + [1 --pc(n)]ftz } 
= xc f~[ 1 - -p •  (n)] (13 ) 

( f M f M ' ) n  ( / M / M , )  random tit- - s t r lbu t lon  

= Xcf2c[1--pn(n)]-- XZcf2c 

=XcX[]f~ [1 p[](n)] 
X D  

=0"1875f 2 [1 pD(n) ] yS j" (14) 

Introducing Cowley's short-range order parameters 
e(n) given by: * 

o¢(n) = 1 pD(n) _ 1 ~¢pc, n_____L, , (15) 
X D  . X c  

* In a recent review article by Cowley (1971) the parameter 
is called 'Warren order parameter'. 

one obtains for IsRo(H')" 

VEC(AI)  

IsRo(a ' )~0.75Nfc 2 ~. ct(n) cos 2zcH'. r , .  (16) 
n = 0  

The physical meaning of ~(n) is very simple: 

random distribution ct(n) = 0 
preference for unlike r, neighbour ~(n) < 0 
preference for like r, neighbour c~(n) > 0 .  

When r, becomes large, ~(n) tends toward zero as there 
is no longer any correlation between the occupation 
of the two sites separated by r,. 

In the A 1 structure type, any interatomic vector can 
be expressed as: 

a2 a3 (17) r .=l  +m-~- +n -~--, 

al, a2, a3 being the three translation vectors of the cubic 
unit cell and / ,  m, n being integers whose sum is even. 

On the other hand H'  can be written as: 

H t * * * = h~at + hza2 + h3a3 , (18) 

a~, a~, a~' being the corresponding reciprocal lattice 
vectors and hi, h2, h3 continuously varying coordinates 
in reciprocal space. Writing e(lmn) for ~(n), equation 
(16) becomes: 

+ o o  +oo  +oo  

lsRo(hlh2ha)~O.75Nf 2 ~ ~ ~. c~(!mn) 

x cos ~(h,l+hzm+h3n) (19) 

with l + m + n  even. 
Although the single crystal is only of limited size, 

we have used for the summation limits + oo and - o0. 
This is possible as the values of ~(lmn) tend to zero 
for large l, m or n. It is further assumed that the va- 
cancy distribution on possible carbon sites is statisti- 
cally symmetrical and thus 

o¢(lmn) = o¢( +_ l +_ m +_ n) . (20) 

When expanding cos ~z(hll+h2m+han) as a sum of 
triple products of trigonometric functions and gather- 
ing terms corresponding to the values + l + m + n ,  
- l + m + n ,  + l - r e + n ,  + l + r n - n  one can easily check 
that all terms but the cosine triple product disappear. 
Then: 

+ o o  +oo  + o o  

IsRo(h~hzha)~_O.75Nf~ ~ ~ ~. e(lmn) 
l ~ - -00  ?11~ - -00  ?1~ - -00  

x cos rdh~ cos rcmh2 cos ~nh3. (21) 

Formula (21) shows that the diffuse intensity is periodic 
in reciprocal space with the periods dh~ =2,  Ah2=2, 
and Ah3 = 2  along the directions a~, a~', a~' of the reci- 
procal lattice fundamental translations. 

Standard Fourier inversion techniques give for 
ct(lmn) the following expression: 
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o~(lmn)~ 0-75. N f ~ .  8 ~,l=-x h2=-1 ha=-1 

IsRo (hlh2h3) cos zdhl cos nmhz cos nnh3 dhldh2dh3 . (22) 

The set of parameters ct(lmn) is defined only when /, 
m and n are integers the sum of which is even. Later 
on it will be shown that IsRo(hlh2h3) has cubic symme- 
try. As a consequence e takes the same value for di- 
rections which are equivalent according to cubic sym- 
metry: 

e ( l m n ) = e ( l m n O ) = ~ ( l n m ~ )  . (23) 

The c~(lmn) parameter is very simply related to the oc- 
cupation of the coordination shell specified by lmn. 
Let nm.,x(lmn), nc(lmn) and nn(lmn) denote the total 
number of sites, the number occupied by carbon atoms 
and the number occupied by vacancies respectively. 
If, for example, it is assumed that a vacancy is situated 
at the origin one obtains for the real structure where 
Xc = 0.75: 

nc(lmn) = nma x ( lmn)xc [  1 - c~(lmn)] 
nD(lmn)= nm.~x(lmn)-- nc(lmn) . (24) 

Knowing the intensity distribution IsRo(h~h2ha) one is 
able to obtain by use of formulae (22) and (24) the 
most probable distribution of vacancies in the single 
crystal. 

For compositions other than VC0.75 the numerical 
factor in equation (22) will be different. However, as 
later calculations show, the ~ values can be normalized 
independently. 

Evaluation of experimental diffuse intensity data for 
VC0.7s 

Evaluation of equation (22) requires that diffuse inten- 
sity data be measured over the whole repeating volume 
of reciprocal space. Two difficulties are encountered 
here: 

(a) Only a limited number of planar sections 
through the repeating volume are available, 

(b) Intensity measurements on electron diffraction 
patterns cannot be very accurate. 

For the solution of the first problem one may make 
use of symmetry considerations. The reciprocal lattice 
corresponding to a face-centered cubic structure is in- 
variant to the symmetry operations of space group 
Im3m(09).  The diffuse intensity in reciprocal space ex- 
hibits the same symmetry. As a proof one may study 
the 9 electron diffraction patterns shown in Fig. 2 of 
Part I and their two-dimensional space groups given 
in Table 1. The symmetry elements found agree with 
those one should recognize in planes passing through the 
origin of a periodic object with space group lm3m. 
In order to construct a three-dimensional model of 
the diffuse intensity one can thus use the intensity data 
from one electron diffraction pattern for all the sym- 
metry related planes. For example the [001] photo- 

graph can be used for 6 sections of the repeating unit 
(3 cube faces and 3 middle planes of the cube sides). 

Table 1. Two-dimensional space groups o f  different elec- 
tron diffraction patterns 

Two dimensional 
Type of space group 

plane normal of diffuse 
(u, v, w without scattering 
common factor) pattern Examples 

[00w] p4m [001] 
[0vv] cmm [011] 
[uuu] p6m [111] 
[Ovw] v+w=2n+ 1 prom [012], [014], [023] 

v + w = 2n cram [013], [015], [035] 
[uuw] 2u+w=2n+l  cmm [113], [115], [221], [223], [443] 

2u+w=4n+2 cram [114], [118], [334] 
2u+ w=4n pmm [112], [116], [332] 

[uvw] p2 [123], [124], [125] 

By using the data from four major electron diffrac- 
tion patterns (001, 011, 111 and 112) it was possible, 
to construct a three-dimensional model of the diffuse 
intensity in reciprocal space shown in Fig. 1. The shape 
of this model is strikingly similar to the shape of the 
theoretical Fermi surface of a primitive cubic metal 
having one electron per atom [Fig. 2 after Sommerfeld 
& Bethe (1933)]. 

The second difficulty concerns the actual value of 
the diffuse intensity. A study of the electron diffraction 
patterns in Fig. 2 of Part I indicates that the diffuse 
intensity has nearly the same value all over the diffuse 
bands. To simplify the evaluation we have assumed 
the constant value of 1 for IsRo(hlh2h3) on the diffuse 
bands and the value 0 everywhere else. As equation 

Fig. 2. Possible, constant-energy surface for a simple cubic 
metal after Sommerfeld & Bethe (1933). 
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Fig. 1. Model of diffuse intensity in reciprocal space. 

[ To face p. 610 



M .  S A U V A G E  A N D  E.  P A R T H E  611 

4|0 ~00 420 +t,O 

© @ © 
2~0 • . . . . . . . . . . . . .  • ,,o<, 2 , o  ,,,'0 

©4 © 
1 
t o~o . ............. . o~o 000 21o'1 020 

© @ © 
,o'o ~o 

© 

o - - -  

i 
21°'1 i i 

( + 6~-- 

i . . . .  i 

i ' 

• . I 

]2] 

Eo113 EOOll 

"_ . . . .  

E125-1 

I I 

~ ( ) ; { ~ ( ) /  J t ~" I 
I " " I 

I , 
o I • 2Vi'61o'h • I • 

1"013"1 El113 

p'o- . . . .  . .  
I ~ O  

/ J  \ 

" ~ /  / ~ ~  ( / / ~  i,'l 

; , ] /  

1"1233 

I i40-2 • . . . . . . . . . . . . .  • .o 
~ 2  2 ~ 2  . , , ,~ • • . . . . . . . . . .  • • 

| 1 
O -- -"  I 

i . . i I I 
I . . . . . . . . . . . . . .  I 

i | 
o o 

p.. 

OOO 2 1 a l  2 0 0  , ~  

--~ ~ ~ / . _  ~,° ' go ' ~t ' o~ 

E0123 El12"1 I"11t.3 

? + .... ~ .... ++ C ~  

! ! 

! " " -  I I :, ! 

: 1 
1 t 
i J 

) ~ ..... ~ i  ..... 

Fig. 3. Nine sections through the diffuse intensity surface calculated with equation (28a) (dotted lines) and (28b) (full lines). 
In [112] the straight vertical lines occur in both cases independently of the Clll  value. 
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(22) can be normalized independently it is not neces- 
sary here to determine the absolute value of  Is~o 
(h~h2h3). 

Analytical formulation of the shape of the diffuse inten- 
sity in reciprocal space 

We have emphasized above that the shape of the dif- 
fuse intensity shows a striking resemblance to the 
theoretical Fermi surface of a simple cubic metal. For 
an analyt ical  expression of  this shape we can thus use 
the mathematical  expressions developed for the Fermi 
surfaces. 

The" distribution of the diffuse intensity is triply 
periodic with periods Ah~ = 2, Ahz=2 and Ah3=2 and 
can be described by a function of  the type 

Cp~,f p~r(h~hzhs) = O (25) 
pqr 

where the sum p-~ q + r is an odd integer, Cp~. is a con- 
stant and fp~.(hlhzt~) has the general formulation" 

I cos p nh~. cos ~ nhz. cos r 7ch3 
+ cos v ~zh 2 . cos ~ rch 3 . cos r rch t 

fpqr(hlh2h3) = + cos p nh3. cos a nhl.  cos r nhz 
+ cos v ~zh 2 . cos q 7zh x . cos r~zh3 

. + cos p nh~. cos ~ 7~h 3 . cos r ~zh 2 
+ cos p nh3. cos a rchz. cos ~ nhl . (26) 

To match the diffuse intensity surfaces with good accu- 
racy only one or two terms of  (25) are needed depend- 
ing on the sample and composition. Al though the 
shapes of the diffuse intensities for all the different 
compounds  given in Figs. 2 and 4 of  Part  I are essen- 
tially identical, there are small differences. As an ex- 
ample one may compare the [001] diffuse intensity 
patterns of VC0.7s, (Part I, Fig. 2) and NbCo.7 (Part 
I, Fig. 4)" the 'circles' in NbC0.7 are more 'square '  
sha.ped in VC0.7s. 

We found that  all the different, slightly varying, dif- 
fuse intensity surfaces fall within two limiting surfaces 
described b y  equation (25) with the following con- 
stants: 

(a) C~00 = 1, C m  = 0 and all other Cp~ = 0 (27a) 

(b) Ca0o = 1, C m =  - 1  and all other Co~,=0.  (27b) 

As 
f~oo(h~hzhs) = 2 (cos rch~ + cos nhz + cos ~zh3) 

and 
ft~t(h~h2h3) = 6 (cos nh~. cos zchz. cos ~zh3) 

the two l imiting analytical functions are given by;  

(a) cos rch~ + cos rchz + cos nh3 = 0 (28a) 

(b) cos nh~ + cos nh2 + cos nh~ 

- 3 ( c o s  nh t .  cos nh2. cos n h a ) = 0 .  (28b) 

Fig. 3 shows a set of  9 sections through the surface 
calculated from equation (28b) (with C m  = - 1 )  which 
matches the set of  9 electron diffraction patterns of 

Fig. 2 in Part  I. The agreement is quite satisfactory 
even for very aslant sections such as [123] or [125]. 
Within the marked unit cells the surface described by 
equation (28a) with C n l = 0  is indicated by dotted 
lines. 

As mentioned above, the C m  value seems to depend 
on the compound under investigation and, for each 
particular compound,  on its composit ion and thermal  
history. The Cl1~ value can be measured conveniently 
by the position of the intersection of  the diffuse inten- 

. . . .  . . . .  . . . . . . . . . . .  . . . . . .  

/ - 21~,. 
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. . . . . . . . . . . .  1 . . . . . . . . . . . . .  t . . . . . .  

000  220 

Fig. 4. Intersection of diffuse intensity surfaces with the vector 
connecting the origin to the reciprocal lattice point 220, 
as a function of Cl11. The experimentally measured Clll 
values of the different compounds are only approximate and 
correspond to the centre of the diffuse band. If the spacing 
between the 000 and 220 spots is denoted by D(000-220) and 
the distance between the two diffuse bands in between by 
Dairf, the value of Clll is given by: 

1 + 2 cos 2nF Dr000-220)- D,ufr C111=- - -  with F=½ 
3 c o s  2 2nF D(000-220) . . . .  " 

h 3 

\ 

I I , 
i I j,"1~ E 

0 0 0  I 

" 
0 ~ 

1oo ' 1 -6 

h i 

I \  
I 
I 
I 
I 
I ~\ 

.3 

Fig. 5. Minimum volume needed for numerical integration, 
corresponding to 9-~ of the unit cell in reciprocal space 
(translation periods zlhl = 2, Ah2 = 2, Ah3--2). 
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sity surface with the vector joining the origin with the 
reciprocal lattice point 220. In Fig. 4 is shown the 

change in position of these intersection points as a 
function of Cm together with experimentally deter- 
mined Cm values for four compounds. 

As the 220, or any symmetry-related reciprocal-lat- 
tice point occurs on many diffraction patterns (e.g. 
[001], [011], [111], [112] and [114]) several measure- 
ments of Cln have been made for each compound. In 
the case of VCo.75 the values are all in good agreement 

05 

05 

random 
033 

0.5 

random 
0.33 

0.5 

random 
02 ¸ 

d i s l r ~ n  

more ~ n c i e s  
thin ~ : , ~ d  .fr=n 
rmdorn distribu~on 

mare c.xrbon ~toms thm 
~ c l e d  f ~  random 
d~mla~on 

.Sho~.n~je ordered VCor ~ 

than e~pected from 
random dislfibu1',m 

. . . . . . . . . . . . . . . . .  

mo~ ¢m'Ixm alort~ fl'~n 
o~ecled f~m , ~ n  
dis1~ibulion 

Short-rmm ordered VC^_ 
a ~ , ~ . ,  cm=-~} .... 

more ~canci~ 
then. e~-'ted from 
I1Jrldom diq'~l~lofl 

. . . . . . . . . . . . . . . . . .  

rnofe c_,ortx)n o toms then 
f r o m  I~rldom 

dislril:~tion 

_1_  . . . .  

Short-range ordered VCo~ 

I 
Lo -.ar  o,do d VCo  

more vacmc~ 
Iron expec~ from 
ror~lorn d i s t r i ~  

. . . . . . . . . . . . . . . . .  

more em-lxm (~ms than 
exl~e~d from random 
distribution ........ 1 . . . .  12 i 

tJO~ L::~O~ 2 f l ~  220~ 310~ 222~  ~ ! 2  4 o o ~  

coordination shells (arranged according to their m,sl:eciwe radii) 

Fig. 6. nn ~no values for  shozt-range ordered vanad ium carbide and long-range ordered V6C5 (=VC0.83).  



614 V A C A N C Y  S H O R T - R A N G E  O R D E R  IN C O M P O U N D S  WITH NaC1 S T R U C T U R E .  II  

with a Clll value about - 3  whereas for NbC0.7 the 
measurements performed on the [011] pattern (NbC0.7 
(a) on Fig. 4) and on the [001] pattern (NbC0.7 (b) on 
Fig. 4) differ. The [011] and [001] diffraction patterns 
were recorded from thin sections of the same poly- 
crystalline sample of nominal composition NbC0.7. 
The discrepancy may be due either to localized fluctua- 
tions in carbon concentration or to modifications in 
the local vacancy order following different cooling 
rates from the heat-treatment temperature. 

Measurements have also been performed on elec- 
tron diffraction patterns of the two carbides NbC0.a4 
and TaC0.s3 (Venables & Meyerhoff, 1971, quoted in 
part I). One can see that as the composition ap- 
proaches M6C5 the Cm value tends towards zero. For 
the long-range ordered phase M6Cs, superstructure re- 
flexions are actually observed along the 220 reciprocal 
lattice row at the same positions where the diffuse 
intensity surface, corresponding to Cm--0 ,  intersects. 

For the case of the nitride TiN~_x, two determina- 
tions of Cm ([011] and [111] patterns of Fig. 4, Part I) 
are consistent with a very small value. Indeed, the dif- 
fuse intensity curves in the [111] pattern are very close 
to circles as is to be expected for C ~ t = 0  (Fig. 3). 

Calculation of vacancy short-range order in vanadium 
carbide 

The calculation of the short-range order parameters 
~(lmn) could be carried out analytically if it were only 
possible to perform the integration in the expression: 

~(lmn)~ I Ii I S[~ C,,~rfpq~(hlhzh3)] 

x cos nlhl. cos rcmh2, cos nnh3dhldhzdh3. (29) 

The Dirac 5 function has been introduced to provide 
a value of 1 everywhere on the diffuse intensity sur- 
face and zero elsewhere. In our evaluation we have re- 
placed the integral by numerical summations. The 
~(lmn) were calculated by two procedures. 

(1) No analytical function was used to describe the 
diffuse intensity surface. 

The repeating volume in reciprocal space had been 
divided in 40 x 40 × 40 elementary cubes (intervals of 
0.05 for hl, h2 and ha). Each of these elementary cubes 
was assigned a coefficient 1 or 0 according to whether, 
from a study of Fig. 1, it contained diffuse intensity 
or not. 

By taking into account the invariance of the diffuse 
intensity surface with respect to the symmetry opera- 
tions of the space group Im3m(09), it was sufficient 
to consider only those points located in 1/96 of the 
repeating volume and to give each point a weight cor- 
responding to its proper multiplicity factor (96 for a 
general position, 48, 24, 12 or even 8 for more symme- 
trical positions). 

The small volume over which we performed the 
summation is shown on Fig. 5. 

The expression for ct(lmn) becomes then: 

1 ~r ~r 

o~(lmn) = K ~. ~ ~ g(hxh2h3)Isao(hah2h3) 
hl=0 h2=0 h3=0 

h2<_hl h3<h2 

x (cos 7zlhl cos zcmh2 cos zcnh3 
+ cos z~lh2 cos zcmh3 cos rcnh 1 
+ cos ~zlha cos rcmht cos 7tnh 2 
+ cos ~zlh2 cos zrmhl cos rcnh3 
+ cos ztlhx cos rcmh3 cos ~znh2 
+cos ~zlha cos z~mh2 cos rcnhl} (30) 

where g(hlh2h3) is proportional to the multiplicity 
factor, 

IsRo(hlh2h3) is 0 or 1 

and K is determined by the normalization condition: 
~(000) = 1. 

The values of o~(lmn) for the first eight coordination 
shells, obtained with this procedure, are listed in the 
second column of Table 2. The number of points in- 
volved in the calculation is 9716. It has been checked 
that small changes in the model chosen for the diffuse 
intensity distribution had but little influence on the 
o~(lmn) values. 

Table 2. Values of ~(lmn) calculated for short-range 
ordered vanadium carbide with different descriptions of 

ISRO and the long-range ordered phase V6Cs 

~(lmn) 
Numerical Analytical descrip- Long-range 
description tion of lsRo ordered phase 

lmn of lsRo Clll  = - 1 Clll  = 0  V6C5 

110 - 0 . 1 7 8  -0 .171  - 0 . 1 9 0  - 0 . 2 0 0  
200 - 0 . 2 6 0  -0"300  -0 .241  - 0 . 2 0 0  
211 +0"176 +0.176 +0.190 +0"200 
220 + 0.008 + 0-011 + 0"006 0 
310 +0.041 +0.064 +0"046 0 
222 -0 .171  - 0 . 1 0 9  - 0 . 1 8 4  - 0 . 2 0 0  
321 - 0 . 0 7 0  -0 -099  - 0 . 1 0 0  - 0 . 1 0 0  
400 +0"143 +0.179 +0.056 +0"200 

(2) The analytical description of the diffuse inten- 
sity surface is used to select the points involved in the 
summation. 

The hlh2 plane is scanned with steps of 0.01 for hi 
and h2, ha being calculated through equations (28a) or 
(28b) for each couple h~ h2 leading to a real solution. 
A summation similar to equation (30) is then per- 
formed over the set of points h~ hz h3 determined in 
this way. In the third and forth columns of Table 2 
are given the first eight ct(lmn) values calculated for 
the two limiting cases corresponding to C l u = -  1 
(45596 data points) and C m = 0  (51226 data points). 

For comparison, c~(lmn) values calculated for the 
long-range ordered phase VC0.83 are listed in the fifth 
column of Table 2. One can see that the c~(lmn) ob- 
tained by following procedures 1 and 2 are similar to 
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Table 3. Occupation o f  different coordination shells surrounding a vacancy in short-range ordered VC0.75 and long- 
range ordered V6C5 (=  VC0.a3) 

Analytical Is~o Long-range 
Numerical IsRo C111 = - 1 C111 = 0 ordered V6C 5 

lmn nmax (lmn) nc (lmn) nD(lmn ) nc (Imn) nD(lmn) no (lmn) n[3(lmn) nc (lmn) nE](lmn) 
110 12 10"6 1"4 10"5 1"5 10"7 1"3 12 0 
200 6 5"65 0"35 5"85 0" 15 5"6 0"4 6 0 
211 24 14-8 9-2 14-8 9-2 14-5 9.5 16 8 
220 12 8.9 3"1 8"9 3"1 9 3 10 2 
310 24 17"3 6-7 16"9 7"1 17"2 6"8 20 4 
222 8 7 1 6-65 1"35 7"1 0"9 8 0 
321 48 38"5 9"5 39"5 8"5 39"5 8"5 44 4 
400 6 3"85 2"15 3"7 2"3 4-2 1"8 4 2 

one another and not very different from the values 
calculated for the long-range ordered structure. 

Using the experimentally determined ~(lmn) values 
one is able to derive, by use of equations (24), the most 
probable local arrangement of vacancies. 

The values of nc(lmn) and nn(lmn) are listed in 
Table 3. The ratio n J n c  for successive coordination 
shells is plotted in Fig. 6 for the short-range ordered 
phase VC0.75 and long-range ordered V6Cs(VC0.sa). 
There is a striking similarity between the two diagrams 
which can be interpreted in the following way. 

Due to the existence of a repulsion between vacan- 
cies the number of vacancies in the first two coordina- 
tion shells around a vacancy is as small as possible: 

- f o r  VC0.s3 (long-range ordered) this number is 
zero for the first two shells, the vacancies being con- 
centrated in the third shell 211. 

- for VC0.7s there is a larger number of vacancies 
in the structure and some must be located in the 110 
and 200 shells but their number is very small and much 
lower than expected from a random distribution. Most 
of the vacancies are in the third shell as in the long- 
range ordered case. 

As pointed out in Part  I, theories have been pro- 
posed to explain why this long-range ordered arrange- 
ment, where each vanadium (or niobium) atom is sur- 
rounded by 5 carbon atoms and 1 vacancy, is parti- 
cularly stable (Lye, 1971). Although this theory is not 
accepted by all groups working on the band structure 
of transition metal compounds, it is quite striking that 
the most probable local distribution in the short-range 
ordered compounds reproduces similar surrounding 
for vanadium atoms. This result is in good agreement 
with the n.m.r, data of Froidevaux & Rossier (1967). 

As shown above, for all compounds discussed one 
finds to a rough approximation the same diffuse inten- 
sity surface. Since the values of ~(lmn) do not depend 
on concentration, all these compounds will thus have 
approximately similar c~(lmn) values which, at least for 
the first eight shells, are not so very different from those 
calculated for the long-range ordered phase M6C5. The 
essential difference in the most probable vacancy ar- 
rangement is, according to equation (24), simply con- 
trolled by the actual composition. As a consequence, 
for example in short-range ordered TaC0.sa the most 

probable local arrangement is the same as in long-range 
ordered M6C 5. This result is quite different from that 
observed in the short-range ordered metallic alloys and 
is probably a consequence of the more directional 
character of bonding. 

Conclusion 

By use of an analytical description of the diffuse inten- 
sity surface, it has been possible to derive the type of 
short-range order encountered in the cubic carbides 
VCI_x, NbCl_x, TaCl_x and nitride TiN~_~. 

This work could be developed in two main direc- 
tions. Firstly it would be interesting to determine the 
factors needed to describe the exact shape of the diffuse 
intensity surface (characterized by the value of the 
constant Cm). 

Secondly, the diffuse scattering could be used to 
obtain information on the Fermi surface of the com- 
pounds investigated. Such work has already been per- 
formed by Castles, Cowley & Spargo (1971) for tita- 
nium oxide (see also Cowley, 1969). We are presently 
carrying out a similar study on vanadium carbide, 
using the energy band calculations made by Neckel, 
Rastl, Weinberger & Mechtler (1972); let us just men- 
tion here that the Fermi surface of VC is very similar 
to the Fermi surface of TiN (Ern & Switendick, 1965). 
This is to be expected as both compounds give similar 
diffuse scattering in their short-range ordered state. 
Further results in this field will be published in a later 
paper. 

We would like to express our thanks to Professor 
Lacroix who has drawn our attention to the similarity 
between the diffuse intensity and the Fermi surface of 
a simple cubic metal, which enabled us to find the 
proper analytical description. We also wish to thank 
Professor M. Peter for very helpful discussions. 
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The effect of the thermal motions of the atoms on interatomic distances is treated in terms of lattice 
dynamics. It is not only shown how the anisotropic vibration tensors of the atoms can be derived from 
the dynamical matrices of the crystal but also how mean binary-product coupling tensors are obtained. 
Each of these tensors expresses the coupling of the motions of two atoms in the unit cell as an average 
over time and lattice and thus is suitable for formulating the bond-length correction. Hence the discus- 
sion centres around the coupling tensors. The coupling tensors cannot be determined by experiment; 
but in order to calculate them and the bond-length correction, one is forced to conceive dynamical 
models of motion for the atoms in the unit cell. The corrections for the known models of uncorrelated 
motion, rigid-body motion and riding motion are rederived by using the coupling tensors. 

1. Introduction 

The effect of the thermal motions of the atoms on inter- 
atomic distances has been discussed by Cruickshank 
(1956, 1961), Busing & Levy (1957, 1964), Schomaker 
& Trueblood (1968), and Johnson (1970). Structure re- 
finement with X-ray and/or neutron data provides the 
mean positions of the atoms in the unit cell. The dis- 
tance between the mean positions of the atoms is gen- 
erally considered as a good approximation of the 'true' 
distance between the atoms. It is, however, more exact 
to define the 'true' distance to be the time and lattice 
average of all instantaneous distances, whereby this 
distance is usually larger because the atoms usually do 
not vibrate in phase in the planes perpendicular to the 
distance vector. Diffraction methods applied to crystals 
do not provide any phase relationships for the motions 
of neighbouring atoms. Hence one is forced to con- 
ceive dynamical models of motion for which the phase 
relationships are defined. These allow one to calculate 
the bond-length correction. The models, which have 
been used in the past, are the models of rigid-body mo- 
tion, riding motion, and uncorrelated motion. 

Two methods have been applied to derive the bond- 
length correction from a given dynamical model. 
Cruickshank (1956, 1961) investigated how rigid-body 
motion effects the electron-density distribution of the 

atoms in question. The calculation of the correction is 
based on determining the correct positions of the elec- 
tron-density maxima which represent the atoms. As a 
new concept Busing & Levy (1957, 1964) introduced 
the joint distribution of the atoms in question and thus 
defined the 'true' distance as the average over the joint 
distribution of the two atoms. The actual calculation of 
the correction is thus based on the solution of convo- 
lution integrals. The concept of the joint distribution 
also plays the prominent part in Johnson's (1970) re- 
view. 

Our approach to determining the correction will be 
derived from a lattice-dynamical investigation of the 
anisotropic vibration tensors. A central concept in 
describing the dynamics of a crystal is the dynamical 
matrices. In a preceding paper (Scheringer, 1972) we 
showed how the anisotropic vibration tensors can be 
expressed by way of the dynamical matrices of the 
crystal. In a similar manner one can also obtain mean 
binary-product coupling tensors. Each of these tensors 
expresses the coupling of the motions of two atoms in 
the unit cell as an average over time and lattice and 
thus contains the respective phase relationships. Hence 
the coupling tensors are suitable for formulating the 
bond-length correction, and in this paper our discus- 
sion will centre around them. 

Unfortunately, the coupling tensors cannot be deter- 


